A Comprehensive Overview of the Duvernay Induced Seismicity near Fox Creek, Alberta
Abstract
In this work we summarize the current state of understanding regarding the induced seismicity related to Duvernay hydraulic fracturing operations in central Alberta, near the town of Fox Creek. Earthquakes in this region cluster into distinct sequences in time, space, and focal mechanism. To corroborate this point, we use cross-correlation detection methods to delineate transient temporal relationships, double-difference relocations to confirm spatial clustering, and moment tensor determinations to show fault motion consistency. The spatiotemporal clustering of sequences is strongly related to nearby hydraulic fracturing operations. In addition, we identify a strong preference for subvertical strike-slip motion with a roughly 45° P-axis orientation, consistent with ambient stress field considerations. The hypocentral geometry in two red traffic light protocol cases, that are robustly constrained by local array data, provide compelling evidence for planar features starting at Duvernay Formation depths and extending into the shallow Precambrian basement. We interpret these features as faults orientated approximately north-south and subvertically, consistent with moment tensor determinations. Finally, we conclude that the primary sequences are best explained as induced events in response to effective stress changes as a result of pore-pressure increase along previously existing faults due to hydraulic fracturing stimulations.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.S43C2887S
- Keywords:
-
- 4475 Scaling: spatial and temporal;
- NONLINEAR GEOPHYSICSDE: 7209 Earthquake dynamics;
- SEISMOLOGYDE: 7223 Earthquake interaction;
- forecasting;
- and prediction;
- SEISMOLOGYDE: 8164 Stresses: crust and lithosphere;
- TECTONOPHYSICS