Understanding Europa's Surface Texture from Remote Sensing Photopolarimetry
Abstract
We use a Goniometric Photopolarimeter (GPP) to make angular scattering reflectance and polarization measurements of the light reflected from particulate materials that simulate a planetary regolith. We compare these laboratory results to astronomical remote sensing observations in an effort to understand the chemical and textural state of object's surface. The GPP employs the Helmholtz Reciprocity Principle (1,2) -the incident light is linearly polarized - the intensity of the reflected component is measured. The light encounters fewer optical surfaces, improving signal to noise. These lab data are physically equivalent to the astronomical data. Our reflectance and polarization phase curves of highly reflective, fine grained, media simulate the regolith of Jupiter's satellite Europa. Our laboratory data exhibit polarization phase curves that are remarkably similar to reports by experienced astronomers (4). Our previous reflectance phase curve data of the same materials also agree with the reflectance phase curves reported by same astronomical observers (5). We find these materials exhibit an increase in circular polarization ratio with decreasing phase angle (3). This suggests coherent backscattering (CB) of photons in the regolith (3). Shkuratov et al. report that the polarization properties of these particulate media are also consistent with the CB enhancement process (5). Our results replicate the astronomical data and indicate that Europa's regolith is fine-grained, highly porous with void space exceeding 90%. Future spacecraft missions to the Jovian system will enhance science return by incorporating angular scattering measurements of the reflectance and polarizatin of the surface.
Minnaert, M. (1941).Asrophys. J., 93, 403-410. Hapke, B. W. (2012). ISBN 978-0-521-88349-8 Nelson, R. M. et al. (1998). Icarus, 131, 223-230. Rosenbush, V. et al. (2015). ISBN 978-1-107-04390-9, pp 340-359. Shkuratov, Yu. et al. (2002) Icarus 159, 396-416.- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.P11C1870N
- Keywords:
-
- 5210 Planetary atmospheres;
- clouds;
- and hazes;
- PLANETARY SCIENCES: ASTROBIOLOGYDE: 6015 Dust;
- PLANETARY SCIENCES: COMETS AND SMALL BODIESDE: 6094 Instruments and techniques;
- PLANETARY SCIENCES: COMETS AND SMALL BODIESDE: 6296 Extra-solar planets;
- PLANETARY SCIENCES: SOLAR SYSTEM OBJECTS