Value of Adaptive Drought Forecasting and Management for the ACF River Basin in the Southeast U.S.
Abstract
In recent times, severe droughts in the southeast U.S. occur every 6 to 10 years and last for up to 4 years. During such drought episodes, the ACF River Basin supplies decline by up to 50 % of their normal levels, and water stresses increase rather markedly, exacerbating stakeholder anxiety and conflicts. As part of the ACF Stakeholder planning process, GWRI has developed new tools and carried out comprehensive assessments to provide quantitative answers to several important questions related to drought prediction and management: (i) Can dry and wet climatic periods be reliably anticipated with sufficiently long lead times? What drought indices can support reliable, skillful, and long-lead forecasts? (ii) What management objectives can seasonal climate forecasts benefit? How should benefits/impacts be shared? (iii) What operational adjustments are likely to mitigate stakeholder impacts or increase benefits consistent with stakeholder expectations? Regarding drought prediction, a large number of indices were defined and tested at different basin locations and lag times. These included local/cumulative unimpaired flows (UIFs) at 10 river nodes; Mean Areal Precipitation (MAP); Standard Precipitation Index (SPI); Palmer Drought Severity Index; Palmer Modified Drought Index; Palmer Z-Index; Palmer Hydrologic Drought Severity Index; and Soil Moisture—GWRI watershed model. Our findings show that all ACF sub-basins exhibit good forecast skill throughout the year and with sufficient lead time. Index variables with high explanatory value include: previous UIFs, soil moisture states (generated by the GWRI watershed model), and PDSI. Regarding drought management, assessments with coupled forecast-management schemes demonstrate that the use of adaptive forecast-management procedures improves reservoir operations and meets basin demands more reliably. Such improvements can support better management of lake levels, higher environmental and navigation flows, higher dependable power generation hours, and better management of consumptive uses without adverse impacts on other stakeholder interests. However, realizing these improvements requires (1) usage of adaptive reservoir management procedures (incorporating forecasts), and (2) stakeholder agreement on equitable benefit sharing.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.H21D1431G
- Keywords:
-
- 1812 Drought;
- HYDROLOGYDE: 1818 Evapotranspiration;
- HYDROLOGYDE: 1836 Hydrological cycles and budgets;
- HYDROLOGYDE: 1843 Land/atmosphere interactions;
- HYDROLOGY