ISCE: A Modular, Reusable Library for Scalable SAR/InSAR Processing
Abstract
Traditional community SAR/InSAR processing software tools have primarily focused on differential interferometry and Solid Earth applications. The InSAR Scientific Computing Environment (ISCE) was specifically designed to support the Earth Sciences user community as well as large scale operational processing tasks, thanks to its two-layered (Python+C/Fortran) architecture and modular framework. ISCE is freely distributed as a source tarball, allowing advanced users to modify and extend it for their research purposes and developing exploratory applications, while providing a relatively simple user interface for novice users to perform routine data analysis efficiently. Modular design of the ISCE library also enables easier development of applications to address the needs of Ecosystems, Cryosphere and Disaster Response communities in addition to the traditional Solid Earth applications. In this talk, we would like to emphasize the broader purview of the ISCE library and some of its unique features that sets it apart from other freely available community software like GMTSAR and DORIS, including:
Support for multiple geometry regimes - Native Doppler (ALOS-1) as well Zero Doppler (ESA missions) systems. Support for data acquired by airborne platforms - e.g, JPL's UAVSAR and AirMOSS, DLR's F-SAR. Radiometric Terrain Correction - Auxiliary output layers from the geometry modules include projection angles, incidence angles, shadow-layover masks. Dense pixel offsets - Parallelized amplitude cross correlation for cryosphere / ionospheric correction applications. Rubber sheeting - Pixel-by-pixel offsets fields for resampling slave imagery for geometric co-registration/ ionospheric corrections. Preliminary Tandem-X processing support - Bistatic geometry modules. Extensibility to support other non-Solid Earth missions - Modules can be directly adopted for use with other SAR missions, e.g., SWOT. Preliminary support for multi-dimensional data products- multi-polarization, multi-frequency, multi-temporal, multi-baseline stacks via the PLANT and GIAnT toolboxes. Rapid prototyping - Geometry manipulation functionality at the python level allows users to prototype and test processing modules at the interpreter level before optimal implementation in C/C++/Fortran.- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.G43A1038A
- Keywords:
-
- 1240 Satellite geodesy: results;
- GEODESY AND GRAVITYDE: 1241 Satellite geodesy: technical issues;
- GEODESY AND GRAVITYDE: 1295 Integrations of techniques;
- GEODESY AND GRAVITYDE: 4337 Remote sensing and disasters;
- NATURAL HAZARDS