Prediction of PM10 grades in Seoul, Korea using a neural network model based on synoptic patterns
Abstract
As of November 2014, the Korean Ministry of Environment (KME) started forecasting the level of ambient particulate matter with diameters ≤ 10 μm (PM10) as four grades: low (PM10 ≤ 30 μg m-3), moderate (30 < PM10 ≤ 80 μg m-3), high (80 < PM10 ≤ 150 μg m-3), and very high (PM10 > 150 μg m-3). Due to short history of forecast, overall performance of the operational forecasting system and its hit rate for the four PM10 grades are difficult to evaluate. In attempt to provide a statistical reference for the current air quality forecasting system, we hindcasted the four PM10 grades for the cold seasons (October-March) of 2001-2014 in Seoul, Korea using a neural network model based on the synoptic patterns of meteorological fields such as geopotential height, air temperature, relative humidity, and wind. In the form of cosine similarity, the distinctive synoptic patterns for each PM10 grades are well quantified as predictors to train the neural network model. Using these fields as predictors and considering the PM10 concentration in Seoul from the day before prediction as an additional predictor, an overall hit rate of 69% was achieved; the hit rates for the low, moderate, high, and very high PM10 grades were 33%, 83%, 45%, and 33%, respectively. This study reveals that the synoptic patterns of meteorological fields are useful predictors for the identification of favorable conditions for each PM10 grade, and the associated transboundary transport and local accumulation of PM10 from the industrialized regions of China. Consequently, the assessments of predictability obtained from the neural network model in this study are reliable to use as a statistical reference for the current air quality forecasting system.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.A51D0085H
- Keywords:
-
- 0345 Pollution: urban and regional;
- ATMOSPHERIC COMPOSITION AND STRUCTUREDE: 0365 Troposphere: composition and chemistry;
- ATMOSPHERIC COMPOSITION AND STRUCTUREDE: 0368 Troposphere: constituent transport and chemistry;
- ATMOSPHERIC COMPOSITION AND STRUCTUREDE: 1640 Remote sensing;
- GLOBAL CHANGE