The Relative Importance of Aqueous vs. Vapor-Pressure Dependent Pathways for Particulate Organic Nitrate Formation
Abstract
Formation of biogenic derived organic nitrates is known as an important immediate sink of atmospheric nitrogen oxides. Although, subsequent oxidation and photolysis of organic nitrates can return a part of the sequestered NOx to the atmosphere, other removal pathways in combination with wet and dry deposition and hydrolysis of particulate organic nitrates is of central importance in irreversible NOx removal from the atmosphere. The aim of this work is to understand how and to what degree the particle phase participates in removal of NOx. We implement a new BVOC oxidation gas phase mechanism (including a detailed representation of OH- and NO3-initiated organic nitrates) and an explicit representation of organic nitrate aerosols formation, including irreversible aqueous-phase uptake and reversible partitioning onto pre-existing organic aerosol, into the CMAQ model. Using these mechanisms, we simulate observations from the SOAS field campaigns over the southeast US in summer 2013 and examine the relative role of water-mediated vs vapor pressure processes in determining aerosol from organic nitrates.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.A33A0194Z
- Keywords:
-
- 0317 Chemical kinetic and photochemical properties;
- ATMOSPHERIC COMPOSITION AND STRUCTUREDE: 0365 Troposphere: composition and chemistry;
- ATMOSPHERIC COMPOSITION AND STRUCTUREDE: 0368 Troposphere: constituent transport and chemistry;
- ATMOSPHERIC COMPOSITION AND STRUCTUREDE: 3305 Climate change and variability;
- ATMOSPHERIC PROCESSES