A volcanic wind-stress origin of the Atlantic Multidecadal Oscillation
Abstract
The Atlantic Multidecadal Oscillation (AMO) is a mode of sea-surface temperature (SST) variability in the North Atlantic that has significant impact on global climate. Most previous studies ascribe the origin of the AMO to oceanic mechanisms, and suggest only a limited role for the atmosphere. Here, we suggest that the AMO is manifested from basin-wide changes in surface wind stress that arise in response to episodic volcanic activity. Our interpretation is based on historical SST, reanalysis, and stratospheric aerosol optical thickness data, wherein it is evident that cool (warm) intervals of the AMO coincide with emergence of strong (weak) winds and high (low) volcanic activity. We find that SST excursions ultimately develop from atmospheric forcing as volcanic events project onto the North Atlantic Oscillation (NAO). A volcanic signature is particularly evident beneath the westerlies in the subpolar region south of Greenland, where several large SST excursions occur coincident with identifiable major eruptions. High latitude surface waters cool when NAO+ circulation, which includes a deepened Icelandic Low, draws cold flow out of the Labrador Sea and into the subpolar region. Important feedbacks that cause SST anomalies to spread across the basin include cloud cover, wind-driven upwelling, and entrainment of Saharan dust into the tropical easterlies. Finally, we speculate that cooling in the North Atlantic observed since 2011 could be linked to renewed volcanic activity over Iceland, namely from the eruptions of Grímsvötn (2011) and Bárðarbunga (2014). An important question remains how North Atlantic SST variability will evolve as atmospheric circulation becomes increasingly modified by human activity.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.A21B0030B
- Keywords:
-
- 3305 Climate change and variability;
- ATMOSPHERIC PROCESSESDE: 3339 Ocean/atmosphere interactions;
- ATMOSPHERIC PROCESSESDE: 1616 Climate variability;
- GLOBAL CHANGEDE: 1620 Climate dynamics;
- GLOBAL CHANGE