SPHEREx: An All-Sky Spectral Survey
Abstract
SPHEREx, a mission in NASA's Small Explorer (SMEX) program that was selected for Phase A in July 2015, is an all-sky survey satellite designed to address all three science goals in NASA's astrophysics division, in a single survey, with a single instrument. We will probe the physics of inflation by measuring non-Gaussianity by studying large-scale structure, surveying a large cosmological volume at low redshifts, complementing high-z surveys optimized to constrain dark energy. The origin of water and biogenic molecules will be investigated in all phases of planetary system formation - from molecular clouds to young stellar systems with protoplanetary disks - by measuring ice absorption spectra. We will chart the origin and history of galaxy formation through a deep survey mapping large-scale spatial power. Finally, SPHEREx will be the first all-sky near-infrared spectral survey, creating a legacy archive of spectra (0.75 - 4.8 um at R = 41.5 and 150) with high sensitivity using a cooled telescope with large mapping speed.SPHEREx will observe from a sun-synchronous low-earth orbit, covering the entire sky in a manner similar to IRAS, COBE and WISE. During its two-year mission, SPHEREx will produce four complete all-sky maps for constraining the physics of inflation. These same maps contain numerous high signal-to-noise absorption spectra to study water and biogenic ices. The orbit naturally covers two deep regions at the celestial poles, which we use for studying galaxy evolution. All aspects of the SPHEREx instrument and spacecraft have high heritage. SPHEREx requires no new technologies and carries large technical and resource margins on every aspect of the design. The projected instrument sensitivity, based on conservative performance estimates, meets the driving point source sensitivity requirement with 300 % margin.SPHEREx is a partnership between Caltech and JPL, following the successful management structure of the NuSTAR and GALEX SMEX missions. The spacecraft will be supplied by Ball Aerospace, based on the demonstrated low-cost BCP 100 bus. The Korea Astronomy and Space Science Institute will contribute hardware and scientific analysis based on two similar space infrared astronomy instruments.
- Publication:
-
American Astronomical Society Meeting Abstracts #227
- Pub Date:
- January 2016
- Bibcode:
- 2016AAS...22714701B