More properties of Yetter-Drinfeld category over dual quasi-Hopf algebras
Abstract
Let $H$ be a dual quasi-Hopf algebra. In this paper we will firstly introduce all possible categories of Yetter-Drinfeld modules over $H$, and give explicitly the monoidal and braided structure of them. Then we prove that the category $^H_H\mathcal{YD}^{fd}$ of finite-dimensional left-left Yetter-Drinfeld modules is rigid. Finally we will study the braided cocommunitivity of $H_0$ in $^H_H\mathcal{YD}$.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2015
- DOI:
- 10.48550/arXiv.1512.01357
- arXiv:
- arXiv:1512.01357
- Bibcode:
- 2015arXiv151201357L
- Keywords:
-
- Mathematics - Rings and Algebras