Uniform hyperbolicity of invariant cylinder
Abstract
For a nearly integrable Hamiltonian systems $H=h(p)+\epsilon P(p,q)$ with $(p,q)\in\mathbb{R}^3\times\mathbb{T}^3$, large normally hyperbolic invariant cylinders exist along the whole resonant path, except for the $\sqrt{\epsilon}^{1+d}$-neighborhood of finitely many double resonant points. It allows one to construct diffusion orbits to cross double resonance.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2015
- DOI:
- 10.48550/arXiv.1509.03160
- arXiv:
- arXiv:1509.03160
- Bibcode:
- 2015arXiv150903160C
- Keywords:
-
- Mathematics - Dynamical Systems