$L^p$-estimates of maximal function related to Schrödinger Equation in $\mathbb{R}^2$
Abstract
Using Guth's polynomial partitioning method, we obtain $L^p$ estimates for the maximal function associated to the solution of Schrödinger equation in $\mathbb R^2$. The $L^p$ estimates can be used to recover the previous best known result that $\lim_{t \to 0} e^{it\Delta}f(x)=f(x)$ almost everywhere for all $f \in H^s (\mathbb{R}^2)$ provided that $s>3/8$.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2015
- DOI:
- 10.48550/arXiv.1508.05437
- arXiv:
- arXiv:1508.05437
- Bibcode:
- 2015arXiv150805437D
- Keywords:
-
- Mathematics - Classical Analysis and ODEs