Visibility-Aware Optimal Contagion of Malware Epidemics
Abstract
Recent innovations in the design of computer viruses have led to new trade-offs for the attacker. Multiple variants of a malware may spread at different rates and have different levels of visibility to the network. In this work we examine the optimal strategies for the attacker so as to trade off the extent of spread of the malware against the need for stealth. We show that in the mean-field deterministic regime, this spread-stealth trade-off is optimized by computationally simple single-threshold policies. Specifically, we show that only one variant of the malware is spread by the attacker at each time, as there exists a time up to which the attacker prioritizes maximizing the spread of the malware, and after which she prioritizes stealth.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2015
- DOI:
- 10.48550/arXiv.1507.03528
- arXiv:
- arXiv:1507.03528
- Bibcode:
- 2015arXiv150703528E
- Keywords:
-
- Computer Science - Cryptography and Security;
- Computer Science - Systems and Control;
- Mathematics - Optimization and Control
- E-Print:
- Amended to include more explanations on assumptions, add more real-world context on new stealthy malware, and improve figures