Hybrid Radio/Free-Space Optical Design for Next Generation Backhaul Systems
Abstract
The deluge of date rate in today's networks imposes a cost burden on the backhaul network design. Developing cost efficient backhaul solutions becomes an exciting, yet challenging, problem. Traditional technologies for backhaul networks include either radio-frequency backhauls (RF) or optical fibers (OF). While RF is a cost-effective solution as compared to OF, it supports lower data rate requirements. Another promising backhaul solution is the free-space optics (FSO) as it offers both a high data rate and a relatively low cost. FSO, however, is sensitive to nature conditions, e.g., rain, fog, line-of-sight. This paper combines both RF and FSO advantages and proposes a hybrid RF/FSO backhaul solution. It considers the problem of minimizing the cost of the backhaul network by choosing either OF or hybrid RF/FSO backhaul links between the base-stations (BS) so as to satisfy data rate, connectivity, and reliability constraints. It shows that under a specified realistic assumption about the cost of OF and hybrid RF/FSO links, the problem is equivalent to a maximum weight clique problem, which can be solved with moderate complexity. Simulation results show that the proposed solution shows a close-to-optimal performance, especially for practical prices of the hybrid RF/FSO links.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2015
- DOI:
- 10.48550/arXiv.1502.00137
- arXiv:
- arXiv:1502.00137
- Bibcode:
- 2015arXiv150200137D
- Keywords:
-
- Computer Science - Information Theory