Some Estimates Regarding Integrated density of States for Random Schrödinger Operator with decaying Random Potentials
Abstract
We investigate some bounds for the density of states in the pure point regime for the random Schrödinger operators $H^{\omega}=-\Delta+\displaystyle\sum_{n\in\mathbb{Z}^d}a_nq_n(\omega)$, acting on $\ell^2(\mathbb{Z}^d)$, where $\{q_n\}$ are iid random variables and $a_n\simeq|n|^{-\alpha}~~\alpha>0$.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2015
- DOI:
- 10.48550/arXiv.1501.05055
- arXiv:
- arXiv:1501.05055
- Bibcode:
- 2015arXiv150105055R
- Keywords:
-
- Mathematics - Spectral Theory;
- 35J10;
- 81Q10;
- 35P20