Simpler Adaptive Optics using a Single Device for Processing and Control
Abstract
The management of low Earth orbit is becoming more urgent as satellite and debris densities climb, in order to avoid a Kessler syndrome. A key part of this management is to precisely measure the orbit of both active satellites and debris. The Research School of Astronomy and Astrophysics at the Australian National University have been developing an adaptive optics (AO) system to image and range orbiting objects. The AO system provides atmospheric correction for imaging and laser ranging, allowing for the detection of smaller angular targets and drastically increasing the number of detectable objects. AO systems are by nature very complex and high cost systems, often costing millions of dollars and taking years to design. It is not unusual for AO systems to comprise multiple servers, digital signal processors (DSP) and field programmable gate arrays (FPGA), with dedicated tasks such as wavefront sensor data processing or wavefront reconstruction. While this multi-platform approach has been necessary in AO systems to date due to computation and latency requirements, this may no longer be the case for those with less demanding processing needs. In recent years, large strides have been made in FPGA and microcontroller technology, with todays devices having clock speeds in excess of 200 MHz whilst using a < 5 V power supply. AO systems using a single such device for all data processing and control may present a far simpler, cheaper, smaller and more efficient solution than existing systems. A novel AO system design based around a single, low-cost controller is presented. The objective is to determine the performance which can be achieved in terms of bandwidth and correction order, with a focus on optimisation and parallelisation of AO algorithms such as wavefront measurement and reconstruction. The AO system consists of a Shack-Hartmann wavefront sensor and a deformable mirror to correct light from a 1.8 m telescope for the purpose of imaging orbiting satellites. The microcontroller or FPGA interfaces directly with the wavefront sensor detector and deformable mirror. Wavefront slopes are calculated from each detector frame and converted into actuator commands to complete the closed loop AO control system. A particular challenge of this system is to optimise the AO algorithms to achieve a high rate (> 1kHz) with low latency (< 1ms) to achieve a good AO correction. As part of the Space Environment Cooperative Research Centre (SERC) this AO system design will be used as a demonstrator for what is possible with ground based AO corrected satellite imaging and ranging systems. The ability to directly and efficiently interface the wavefront sensor and deformable mirror is an important step in reducing the cost and complexity of an AO system. It is hoped that in the future this design can be modified for use in general AO applications, such as in 1-3 m telescopes for space surveillance, or even for amateur astronomy.
- Publication:
-
Advanced Maui Optical and Space Surveillance Technologies Conference
- Pub Date:
- 2015
- Bibcode:
- 2015amos.confE.104Z