Dark matter triggers of supernovae
Abstract
The transit of primordial black holes through a white dwarf causes localized heating around the trajectory of the black hole through dynamical friction. For sufficiently massive black holes, this heat can initiate runaway thermonuclear fusion causing the white dwarf to explode as a supernova. The shape of the observed distribution of white dwarfs with masses up to 1.25 M⊙ rules out primordial black holes with masses ∼1019- 1020 gm as a dominant constituent of the local dark matter density. Black holes with masses as large as 1024 gm will be excluded if recent observations by the NuStar Collaboration of a population of white dwarfs near the galactic center are confirmed. Black holes in the mass range 1020- 1022 gm are also constrained by the observed supernova rate, though these bounds are subject to astrophysical uncertainties. These bounds can be further strengthened through measurements of white dwarf binaries in gravitational wave observatories. The mechanism proposed in this paper can constrain a variety of other dark matter scenarios such as Q balls, annihilation/collision of large composite states of dark matter and models of dark matter where the accretion of dark matter leads to the formation of compact cores within the star. White dwarfs, with their astronomical lifetimes and sizes, can thus act as large spacetime volume detectors enabling a unique probe of the properties of dark matter, especially of dark matter candidates that have low number density. This mechanism also raises the intriguing possibility that a class of supernova may be triggered through rare events induced by dark matter rather than the conventional mechanism of accreting white dwarfs that explode upon reaching the Chandrasekhar mass.
- Publication:
-
Physical Review D
- Pub Date:
- September 2015
- DOI:
- 10.1103/PhysRevD.92.063007
- arXiv:
- arXiv:1505.04444
- Bibcode:
- 2015PhRvD..92f3007G
- Keywords:
-
- 95.35.+d;
- 97.20.Rp;
- 97.60.Lf;
- Dark matter;
- Faint blue stars white dwarfs degenerate stars nuclei of planetary nebulae;
- Black holes;
- High Energy Physics - Phenomenology;
- Astrophysics - Cosmology and Nongalactic Astrophysics;
- Astrophysics - High Energy Astrophysical Phenomena;
- High Energy Physics - Theory
- E-Print:
- 16 pages, 3 figures