Estimating Distances from Parallaxes
Abstract
Astrometric surveys such as Gaia and LSST will measure parallaxes for hundreds of millions of stars. Yet they will not measure a single distance. Rather, a distance must be estimated from a parallax. In this didactic article, I show that doing this is not trivial once the fractional parallax error is larger than about 20%, which will be the case for about 80% of stars in the Gaia catalogue. Estimating distances is an inference problem in which the use of prior assumptions is unavoidable. I investigate the properties and performance of various priors and examine their implications. A supposed uninformative uniform prior in distance is shown to give very poor distance estimates (large bias and variance). Any prior with a sharp cut-off at some distance has similar problems. The choice of prior depends on the information one has available - and is willing to use - concerning, for example, the survey and the Galaxy. I demonstrate that a simple prior which decreases asymptotically to zero at infinite distance has good performance, accommodates non-positive parallaxes, and does not require a bias correction.
- Publication:
-
Publications of the Astronomical Society of the Pacific
- Pub Date:
- October 2015
- DOI:
- arXiv:
- arXiv:1507.02105
- Bibcode:
- 2015PASP..127..994B
- Keywords:
-
- Astrophysics - Instrumentation and Methods for Astrophysics;
- Astrophysics - Astrophysics of Galaxies;
- Astrophysics - Solar and Stellar Astrophysics
- E-Print:
- To appear as a tutorial article in the October 2015 issue (vol. 127) of Publications of the Astronomical Society of the Pacific (http://www.jstor.org/stable/10.1086/683116)