Swift detection of the super-swift switch-on of the super-soft phase in nova V745 Sco (2014)
Abstract
V745 Sco is a recurrent nova, with the most recent eruption occurring in February 2014. V745 Sco was first observed by Swift a mere 3.7 h after the announcement of the optical discovery, with the super-soft X-ray emission being detected around 4 d later and lasting for only ∼2 d, making it both the fastest follow-up of a nova by Swift and the earliest switch-on of super-soft emission yet detected. Such an early switch-on time suggests a combination of a very high velocity outflow and low ejected mass and, together with the high effective temperature reached by the super-soft emission, a high mass white dwarf (>1.3 M⊙). The X-ray spectral evolution was followed from an early epoch where shocked emission was evident, through the entirety of the super-soft phase, showing evolving column density, emission lines, absorption edges, and thermal continuum temperature. UV grism data were also obtained throughout the super-soft interval, with the spectra showing mainly emission lines from lower ionization transitions and the Balmer continuum in emission. V745 Sco is compared with both V2491 Cyg (another nova with a very short super-soft phase) and M31N 2008-12a (the most rapidly recurring nova yet discovered). The longer recurrence time compared to M31N 2008-12a could be due to a lower mass accretion rate, although inclination of the system may also play a part. Nova V745 Sco (2014) revealed the fastest evolving super-soft source phase yet discovered, providing a detailed and informative data set for study.
- Publication:
-
Monthly Notices of the Royal Astronomical Society
- Pub Date:
- December 2015
- DOI:
- 10.1093/mnras/stv2144
- arXiv:
- arXiv:1509.04004
- Bibcode:
- 2015MNRAS.454.3108P
- Keywords:
-
- stars: individual: V745 Sco;
- novae;
- cataclysmic variables;
- ultraviolet: stars;
- X-rays: stars;
- Astrophysics - Solar and Stellar Astrophysics;
- Astrophysics - High Energy Astrophysical Phenomena
- E-Print:
- 14 pages, 11 figures (4 in colour), accepted for publication in MNRAS