Analogues of Mathai-Quillen forms in sheaf cohomology and applications to topological field theory
Abstract
We construct sheaf-cohomological analogues of Mathai-Quillen forms, that is, holomorphic bundle-valued differential forms whose cohomology classes are independent of certain deformations, and which are believed to possess Thom-like properties. Ordinary Mathai-Quillen forms are special cases of these constructions, as we discuss. These sheaf-theoretic variations arise physically in A/2 and B/2 model pseudo-topological field theories, and we comment on their origin and role.
- Publication:
-
Journal of Geometry and Physics
- Pub Date:
- June 2015
- DOI:
- arXiv:
- arXiv:1310.5754
- Bibcode:
- 2015JGP....92....1G
- Keywords:
-
- Mathai-Quillen forms;
- Thom representatives;
- Sheaf cohomology;
- Topological field theory;
- High Energy Physics - Theory
- E-Print:
- 52 pages, LaTeX