Masses of asteroids and the total mass of the main asteroid belt
Abstract
The renovated database of observations of planets and spacecraft, as well as asteroid data have been used for estimation of masses of asteroids and the total mass of main asteroid belt from their perturbations on motion of solar system bodies. The direct dynamical mass estimations were obtained for about 30 largest asteroids by their gravitation impacts on other bodies. The masses of other large asteroids were estimated by their diameters and evaluated densities. The total contribution of all remaining small asteroids is modeled as a gravitational force from uniform two-dimensional ring with the constant mass distribution in the ecliptic plane. The work was based on the new version of the EPM2014 ephemerides of IAA RAS using more than 800000 positional observations (mostly radar ones) of planets and spacecraft obtained in 1913-2014. For the first time, the two-dimensional asteroid annulus with dimensions corresponding to its observable width has been used instead of one-dimensional ring which applied for modeling perturbation of small asteroids in our previous versions of EPM ephemerides. As a result, the accuracy of the mass of the two-dimensional asteroid annulus has increased by 6 times; orbits of all planets have improved distinctly, in particular, the formal uncertainties of the semi-major axes of the planets decreased by two times. The total mass of the main asteroid belt has been found: Mbelt = (12.25 ± 0.19)×10-10MSun. ≈ 2.5 MCeres.Moreover, the estimation of the total mass of Trans-Neptunian Objects (TNO) including the known masses of 30 largest TNO, Pluto and the evaluated mass of the TNO ring (with a radius of 43 au) was obtained:592×10-10 MSun (or 125 MCeres).
- Publication:
-
IAU General Assembly
- Pub Date:
- August 2015
- Bibcode:
- 2015IAUGA..2256597V