MHD turbulence in the intracluster medium
Abstract
In this work we discuss the turbulent evolution of structures in the intracluster medium based on the two fluid approximations: MHD and collisionless plasma under Chew Goldberger Low (CGL) closure. Turbulence excited by galactic motions and gas inflow in intracluster medium will develop in very different ways considering the two fluid approaches. Statistics of density distributions, and velocity and magnetic fields are provided. Compared to the standard MHD case, the instabilities that arise from CGL-MHD models strongly modify the probability distribution functions of the plasma velocity and density, basically increasing their dispersion. Moreover, the spectra of both density and velocity show increased power at small scales, due to the instabilities growth rate that are larger as smaller scales. Finally, in high beta plasmas, i.e. B 2 << P, a fast increase of the magnetic energy density is observed in the CGL-MHD models, faster than the standard MHD turbulent dynamo that operates at timescales τ ~ L/v L . The signatures of the increased power at small scales and the increase of magnetic field intensity from CGL-MHD models could be observed at radio wavelengths. A comparison of the structure function of the synchrotron emission, as well as the statistics of Faraday rotation effects on the synchrotron polarization, for both the MHD and CGL-MHD models is provided.
- Publication:
-
Highlights of Astronomy
- Pub Date:
- March 2015
- DOI:
- 10.1017/S1743921314011740
- Bibcode:
- 2015HiA....16..406F
- Keywords:
-
- galaxies: clusters: general;
- galaxies: intergalactic medium;
- galaxies: magnetic fields