The impact of stellar activity on X-ray and UV transits
Abstract
X-ray and UV observations of transiting exoplanets have revealed the presence of extended atmospheres around a number of systems. At high energies, stellar radiation is absorbed high up in the planetary atmosphere, making X-ray and UV observations a potential tool for investigating the upper atmospheres of exoplanets. However, at these high energies, stellar activity can dramatically impact the observations. At short wavelengths the star appears limb-brightened, and active regions appear as bright features on the stellar disk. These will impact both the transit depth and shape, affecting our ability to measure the true planet-to-star radius ratio.I will show results of simulate exoplanet transit light curves using Solar data obtained in the soft X-ray and UV by NASA’s Solar Dynamics Observatory to investigate the impact of stellar activity at these wavelengths. By using a limb-brightened transit model coupled with disk resolved Solar images in the X-ray, extreme- and far-UV I will show how both occulted and unocculted active regions can mimic an inflated planetary atmosphere by changing the depth and shape of the transit profile. I will also show how the disk integrated Lyman-alpha Solar irradiance varies on both short and long timescales and how this variability can impact our ability to recover the true radius ratio of a transiting exoplanet.Finally, I will present techniques on how to overcome these effects to determine the true planet-to-star radius in X-ray and UV observations.
- Publication:
-
AAS/Division for Extreme Solar Systems Abstracts
- Pub Date:
- December 2015
- Bibcode:
- 2015ESS.....310805L