Spectral analysis of Uranus’ 2014 bright storm with VLT/SINFONI
Abstract
Observations by amateur observers of an extremely bright storm system in Uranus’ atmosphere in September 2014 triggered an international campaign to view this feature with many telescopes across the world. Near infrared observations of the storm system were acquired in October/November 2014 with SINFONI on ESO’s Very Large Telescope (VLT) in Chile. SINFONI is an Integral Field Unit spectrometer, recording 64 × 64 pixel images with 2048 wavelengths/pixel using adaptive optics. H-band (1.43 - 1.87 µm) image 'cubes' were obtained at spatial resolutions of ∼ 0.1″ per pixel. The observations show that the centre of the storm feature shifts markedly with increasing altitude, moving in the retrograde direction and slightly poleward with increasing altitude. A faint 'tail' of more reflective material was also seen to the immediate south of the storm, which again trails in the retrograde direction. The observed spectra were analysed with the radiative transfer and retrieval code, NEMESIS (Irwin et al., 2008). We find that the storm is well-modelled using either two main cloud layers of a 5-layer aerosol model based on Sromovsky et al. (2011) or employing the simpler two-cloud-layer model of Tice et al. (2013). The deep component appears to be caused by a brightening (i.e. an increase in reflectivity) and increase in altitude of the main tropospheric cloud deck at 2 - 3 bars for both models, while the upper component of the feature appears to be due to either a thickening of the tropospheric haze of the 2-layer model or a vertical extension of the upper tropospheric cloud of the 5-layer model, assumed to be composed of methane ice and based at the assumed methane condensation level at 1.23 bar. For the 5-layer model we also found this methane ice cloud to be responsible for the faint ‘tail’ seen to the feature’s south and the brighter polar ‘hood’ seen in all observations polewards of ∼ 45°N.During the twelve days between our sets of observations the higher-altitude component of the feature was observed to have brightened significantly and moved to even higher altitudes, while the deeper component faded.
- Publication:
-
AAS/Division for Planetary Sciences Meeting Abstracts #47
- Pub Date:
- November 2015
- Bibcode:
- 2015DPS....4740001I