The Shape of Near-Earth Asteroid 275677 (2000 RS11) From Inversion of Arecibo and Goldstone Radar Images
Abstract
We observed near-Earth asteroid 2000 RS11 with the Arecibo and Goldstone planetary radars during a 0.035 au approach in March 2014, obtaining delay-Doppler images between March 13 and March 17. The finest-resolution images have range resolution of 7.5 m/pixel and show that RS11 is a contact binary with complex topography. We used the SHAPE software package (Magri et al., Icarus 186, 156-160 2007) to create a physical model of RS11 and its spin state from these delay-Doppler images.The rotation period of RS11 is well constrained from optical lightcurves, P = 4.444 ± 0.001 h (Warner et al., Minor Planet Bulletin 41, 160; 2014 and Benishek, Minor Planet Bulletin 41, 257; 2014). We found two possible pole directions and corresponding shape models, mirror images of one another, which provide equally good fits to the radar data. RS11’s pole direction is either (λ , β) = (155°, 30°) ± 10° or (335°, -30°) ± 10° in J2000 ecliptic coordinates. The most likely pole directions of RS11 are not aligned with the heliocentric orbit normal and instead have an obliquity within 10° of 56° or 124°.Our best-fit shape models are 1400-vertex polyhedra comprising two lobes in contact. The lengths of RS11’s principal axes are 698 ± 71 m, 578 ± 59 m, and 758 ± 77 m. RS11 has a volume of 0.086 ± 0.026 km^3. The long axis of RS11’s larger lobe is 751 ± 77 m and the long axis of the smaller lobe is 398 ± 41 m; the volume ratio between these lobes is roughly 2.7 ± 10%. Spectral data informs us that RS11 is an S-class object (Lazzarin et al., Icarus 169, 379; 2004).RS11's shape is unusual compared with those of other contact binary NEAs imaged by radar. Its larger lobe is flattened. Additionally, while the neck between the smaller and larger lobes of most contact binaries is located near the larger lobe's longest principal axis (such as in the cases of 25143 Itokawa and 4179 Toutatis), RS11's neck is near its larger lobe's shortest principal axis. RS11 is the first asteroid of this type for which we have a shape model.
- Publication:
-
AAS/Division for Planetary Sciences Meeting Abstracts #47
- Pub Date:
- November 2015
- Bibcode:
- 2015DPS....4721303B