Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review
Abstract
Plant growth-promoting rhizobacteria (PGPR) are soil bacteria that are able to colonize rhizosphere and to enhance plant growth by means of a wide variety of mechanisms like organic matter mineralization, biological control against soil-borne pathogens, biological nitrogen fixation, and root growth promotion. A very interesting feature of PGPR is their ability of enhancing nutrient bioavailability. Several bacterial species have been characterized as P-solubilizing microorganisms while other species have been shown to increase the solubility of micronutrients, like those that produce siderophores for Fe chelation. The enhanced amount of soluble macro- and micronutrients in the close proximity of the soil-root interface has indeed a positive effect on plant nutrition. Furthermore, several pieces of evidence highlight that the inoculation of plants with PGPR can have considerable effects on plant at both physiological and molecular levels (e.g., induction of rhizosphere acidification, up- and downregulation of genes involved in ion uptake, and translocation), suggesting the possibility that soil biota could stimulate plants being more efficient in retrieving nutrients from soil and coping with abiotic stresses. However, the molecular mechanisms underlying these phenomena, the signals involved as well as the potential applications in a sustainable agriculture approach, and the biotechnological aspects for possible rhizosphere engineering are still matters of discussion.
- Publication:
-
Biology and Fertility of Soils
- Pub Date:
- May 2015
- DOI:
- 10.1007/s00374-015-0996-1
- Bibcode:
- 2015BioFS..51..403P
- Keywords:
-
- Nutrient availability;
- Soil bacteria;
- Nitrogen;
- Phosphorus;
- Iron;
- PGPR