Infrared Time Lags for the Periodic Quasar PG 1302-102
Abstract
The optical light curve of the quasar PG 1302-102 at z=0.278 shows a strong, smooth 5.2 year periodic signal, detectable over a period of ∼20 years. Although the interpretation of this phenomenon is still uncertain, the most plausible mechanisms involve a binary system of two supermassive black holes with a subparsec separation. At this close separation, the nuclear black holes in PG 1302-102 will likely merge within ∼ {10}5 years due to gravitational wave emission alone. Here, we report the rest-frame near-infrared time lags for PG 1302-102. Compiling data from WISE and Akari, we confirm that the periodic behavior reported in the optical light curve from Graham et al. is reproduced at infrared wavelengths, with best-fit observed-frame 3.4 and 4.6 μ {{m}} time lags of (2219 ± 153, 2408 ± 148) days for a near face-on orientation of the torus, or (4103 ± 153, 4292 ± 148) days for an inclined system with relativistic Doppler boosting in effect. The periodicity in the infrared light curves and the light-travel time of the accretion disk photons to reach the dust glowing regions support that a source within the accretion disk is responsible for the optical variability of PG 1302-102, echoed at the farther out dusty regions. The implied distance of this dusty, assumed toroidal region is ∼1.5 pc for a near face-on geometry or ∼1.1 pc for the relativistic Doppler-boosted case.
- Publication:
-
The Astrophysical Journal
- Pub Date:
- November 2015
- DOI:
- arXiv:
- arXiv:1511.01515
- Bibcode:
- 2015ApJ...814L..12J
- Keywords:
-
- galaxies: active;
- quasars: individual: PG 1302-102;
- Astrophysics - Astrophysics of Galaxies
- E-Print:
- 5 pages, accepted to ApJL