X-Ray Properties of Low-mass Pre-main Sequence Stars in the Orion Trapezium Cluster
Abstract
The Chandra HETG Orion Legacy Project (HOLP) is the first comprehensive set of observations of a very young massive stellar cluster that provides high-resolution X-ray spectra of very young stars over a wide mass range (0.7-2.3 {M}⊙ ). In this paper, we focus on the six brightest X-ray sources with T Tauri stellar counterparts that are well-characterized at optical and infrared wavelengths. All stars show column densities which are substantially smaller than expected from optical extinction, indicating that the sources are located on the near side of the cluster with respect to the observer as well as that these stars are embedded in more dusty environments. Stellar X-ray luminosities are well above 1031 erg s-1, in some cases exceeding 1032 erg s-1 for a substantial amount of time. The stars during these observations show no flares but are persistently bright. The spectra can be well fit with two temperature plasma components of 10 MK and 40 MK, of which the latter dominates the flux by a ratio 6:1 on average. The total emission measures range between 3-8 × 1054 cm-3 and are comparable to active coronal sources. The fits to the Ne ix He-Like K-shell lines indicate forbidden to inter-combination line ratios consistent with the low-density limit. Observed abundances compare well with active coronal sources underlying the coronal nature of these sources. The surface flux in this sample of 0.6-2.3 {M}⊙ classical T Tauri stars shows that coronal activity increases significantly between ages 0.1 and 10 Myr. The results demonstrate the power of X-ray line diagnostics to study coronal properties of T Tauri stars in young stellar clusters.
- Publication:
-
The Astrophysical Journal
- Pub Date:
- September 2015
- DOI:
- arXiv:
- arXiv:1503.04366
- Bibcode:
- 2015ApJ...810...55S
- Keywords:
-
- stars: abundances;
- stars: activity;
- stars: pre-main sequence;
- Astrophysics - Solar and Stellar Astrophysics
- E-Print:
- 13 pages, 12 figures, submitted to the Astrophysical Journal