Estimating Ecosystem Carbon Stock Change in the Conterminous United States from 1971 to 2010
Abstract
There is significant geographic variability in U.S. ecosystem carbon sequestration due to natural and human environmental conditions. Climate change, natural disturbance and human land use are the major driving forces that can alter local and regional carbon sequestration rates. In this study, a comprehensive environmental input dataset (1-km resolution) was developed and used in the process-based Integrated Biosphere Simulator (IBIS) to quantify the U.S. carbon stock changes from 1971-2010, which potentially forms a baseline for future U.S. carbon scenarios. The key environmental data sources include land cover change information from more than 2,600 sample blocks across U.S. (10-km by 10-km in size, 60-m resolution, 1973-2000), wildland fire scar and burn severity information (30-m resolution, 1984-2010), vegetation canopy percentage and live biomass level (30-m resolution, ~2000), spatially heterogeneous atmospheric carbon dioxide and nitrogen deposition (~50-km resolution, 2003-2009), and newly available climate (4-km resolution, 1895-2010) and soil variables (1-km resolution, ~2000). The IBIS simulated the effects of atmospheric CO2 fertilization, nitrogen deposition, climate change, fire, logging, and deforestation/devegetation on ecosystem carbon changes. Multiple comparable simulations were implemented to quantify the contributions of key environmental drivers.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2015
- Bibcode:
- 2015AGUFMGC13F1212L
- Keywords:
-
- 0315 Biosphere/atmosphere interactions;
- ATMOSPHERIC COMPOSITION AND STRUCTURE;
- 0428 Carbon cycling;
- BIOGEOSCIENCES;
- 1630 Impacts of global change;
- GLOBAL CHANGE;
- 4217 Coastal processes;
- OCEANOGRAPHY: GENERAL