Static Stress Transfers Causes Delayed Seismicity Shutdown
Abstract
It has been long debated what role static stress changes play in the enhancement and suppression of seismicity in the near-field region of large earthquakes. While numerous observations have correlated earthquake triggering and elevated seismicity rates with regions of increased Coulomb failure stress (CFS), observations of seismic quiescence in stress shadow regions are more controversial. When observed, seismicity shutdowns are often delayed by days to months following a negative stress perturbation. Some studies propose that the delay in the seismic shutdown can be caused by rupture promoting failure on one fault type while suppressing activity on another; thus the observed seismicity reflects the weighted contribution of the two faulting populations. For example, it was noted that in the 75 years following the 1906 San Francisco earthquake, strike-slip faulting earthquakes were inhibited, while thrust faulting events were promoted. However, definitive observations supporting this delayed shutdown mechanism are rare. In this study, we report seismicity rate increases and decreases that correlate with regions of Coulomb stress transfer, and show observations of a delayed shutdown in the Yuha Desert, California. We use a Coulomb stress change model coupled with a rate-and state- earthquake model to show that the delay in the shutdown is due to the combined changes in the rates of normal and strike-slip faulting events following the 2010 M5.72 Ocotillo aftershock of the 2010 El Mayor-Cucapah earthquake.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2015
- Bibcode:
- 2015AGUFM.T41A2844K
- Keywords:
-
- 7223 Earthquake interaction;
- forecasting;
- and prediction;
- SEISMOLOGY;
- 7230 Seismicity and tectonics;
- SEISMOLOGY;
- 8036 Paleoseismology;
- STRUCTURAL GEOLOGY;
- 8107 Continental neotectonics;
- TECTONOPHYSICS