Reconstructing Plate Motions on Europa with GPlates
Abstract
Observations of past plate tectonic - like motions in Europa's icy lithosphere have been reported in previous studies. Quantifying the nature, age, and amount of plate motion is important for geophysical models of Europa's ice shell and for astrobiology, since subsumed pates could drive the flow of nutrients into the subsurface ocean. We have used GPlates software (Williams et al., GSA Today 2012) and a mosaic of regional-resolution Galileo SSI data from orbits E11, E15, E17, and E19 to make interactive reconstructions of both the Northern Falga region (60N, 220W) and the Castalia Macula region (0N, 225W). The advantage of this method is that plate motions are calculated on a sphere, while still maintaining the original Galileo image pieces in their proper geographic locations. Previous work on the Castalia Macula region (Patterson et al. J.Struct.Geol. 2006) and the adjacent Phaidra Linea region (Patterson and Ernst, LPSC 2011) found offsets along spreading boundaries, and then calculated the best fit finite rotations to close those offsets. Though this method is mathematically rigorous and gives a statistical goodness of fit, it is not easy to test multiple hypotheses for candidate piercing points or divisions of candidate plate boundaries. Through the interactive environment, we found that we could better account for observed offsets in this region by breaking it into 32 different plates. Patterson and Ernst broke the Phaidra region into 6 plates which exhibited nonrigid behavior, where our study breaks it into 16 rigid plates. The Northern Falga Regio area is interesting due to the potential for large amounts of subsumption of Europa's icy crust in this location. The previous reconstruction (Kattenhorn and Prockter, Nat.Geosci. 2014) was based on planar geometry, and we have replicated these results using a spherically-based reconstruction. We will present the plate maps and reconstructions for both of these regions, along with the best fit rotation poles.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2015
- Bibcode:
- 2015AGUFM.P31B2059C
- Keywords:
-
- 6218 Jovian satellites;
- PLANETARY SCIENCES: SOLAR SYSTEM OBJECTS;
- 6260 Neptunian satellites;
- PLANETARY SCIENCES: SOLAR SYSTEM OBJECTS;
- 6280 Saturnian satellites;
- PLANETARY SCIENCES: SOLAR SYSTEM OBJECTS;
- 6290 Uranian satellites;
- PLANETARY SCIENCES: SOLAR SYSTEM OBJECTS