Recovery of Neodymium from Aqueous Solution Using Magnetic Nano-particles
Abstract
This study investigates the recovery of spiked Nd from seawater media by magnetic nano-particles Fe3O4. A rapid increase of Nd recovery from 0.06 to 23.6 mg g-1 was observed when the solution pH adjusted from 2.01 to 8.18 at 298 K. A maxima Nd adsorption capacity was estimated to be 25.02 mg g-1 at 308 K and 8.18 pH. A negative change in standard free energy (ΔGo = -5.87, -6.69, -7.68 kJ mol-1 at 288, 298, and 308 K, respectively) suggests that Nd adsorption is spontaneous. The positive ΔHo value (2.42 kJ mol-1) supports its endothermic nature of the adsorption and <span">agrees with the observed enhanced Nd adsorption at high temperatures. Besides, the positive ΔSo (10.84 J mol-1 K-1) displays that the randomness increase at the solid-solution interface during Nd adsorption. More importantly, we observed that the Nd adsorption only decreased slightly while the NaCl ionic strength increased from 0.001 to 1.0 N, implying the involvement of inner-sphere mechanism. These data indicated that the adsorbent of ferrite has a great potential in selective and fast recovery of spiked Nd from seawater matrix.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2015
- Bibcode:
- 2015AGUFM.H33C1630T
- Keywords:
-
- 0414 Biogeochemical cycles;
- processes;
- and modeling;
- BIOGEOSCIENCES;
- 0496 Water quality;
- BIOGEOSCIENCES;
- 1830 Groundwater/surface water interaction;
- HYDROLOGY;
- 1839 Hydrologic scaling;
- HYDROLOGY