Quantifying uranium transport rates and storage of fluvially eroded mine tailings from a historic mine site in the Grand Canyon Region
Abstract
The Grand Canyon region contains a large number of breccia pipes with economically viable uranium, copper, and silver concentrations. Mining in this region has occurred since the late 19th century and has produced ore and waste rock having elevated levels of uranium and other contaminants. Fluvial transport of these contaminants from mine sites is a possibility, as this arid region is susceptible to violent storms and flash flooding which might erode and mobilize ore or waste rock. In order to assess and manage the risks associated with uranium mining, it is important to understand the transport and storage rates of sediment and uranium within the ephemeral streams of this region. We are developing a 1-dimensional sediment transportation model to examine uranium transport and storage through a typical canyon system in this region. Our study site is Hack Canyon Mine, a uranium and copper mine site, which operated in the 1980's and is currently experiencing fluvial erosion of its waste rock repository. The mine is located approximately 40km upstream from the Colorado River and is in a deep, narrow canyon with a small watershed. The stream is ephemeral for the upper half of its length and sediment is primarily mobilized during flash flood events. We collected sediment samples at 110 locations longitudinally through the river system to examine the distribution of uranium in the stream. Samples were sieved to the sand size and below fraction (<2mm) and uranium was measured by gamma-ray spectroscopy. Sediment storage zones were also examined in the upper 8km of the system to determine where uranium is preferentially stored in canyon systems. This information will quantify the downstream transport of constituents associated with the Hack Canyon waste rock and contribute to understanding the risks associated with fluvial mobilization of uranium mine waste.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2015
- Bibcode:
- 2015AGUFM.H31I1539S
- Keywords:
-
- 0414 Biogeochemical cycles;
- processes;
- and modeling;
- BIOGEOSCIENCES;
- 0432 Contaminant and organic biogeochemistry;
- BIOGEOSCIENCES;
- 1830 Groundwater/surface water interaction;
- HYDROLOGY;
- 1875 Vadose zone;
- HYDROLOGY