Urban "accidental" wetlands mediate water quality and heat exposure for homeless populations in a desert city
Abstract
In urban settings where humans interact in complex ways with ecosystems, there may be hidden or unanticipated benefits (services) or harm (disservices) conferred by the built environment. We examined interactions of a highly vulnerable population, the homeless, with urban waterways and wetlands in the desert city of Phoenix, Arizona, U.S.A. Climate change models project increases in heat, droughts, and extreme floods for the southwestern U.S. These projected changes pose a number of problems for sustainability and quality of future water supply, and the ability of human populations to mitigate heat stress and avoid fatalities. Urban wetlands that are created "accidentally" (by water pooling in abandoned areas of the landscape) have many structural (e.g., soils and hydrology) and functional (e.g., high denitrification) elements that mimic natural, unaltered aquatic systems. Accidental wetland systems in the dry bed of the Salt River, fed by storm and waste water from urban Phoenix, are located within economically depressed sections of the city, and show the potential for pollutant and heat mitigation. We used a mixed-method socio-ecological approach to examine wetland ecosystem functions and the ways in which homeless populations utilize Salt River wetlands for ecosystem services. Interviews and trash surveys indicated that homeless people are accessing and utilizing the wetlands as a source of running water, for sanitary and heat mitigation services, and for recreation and habitation. Environmental monitoring demonstrated that the wetlands can provide a reliable source of running water, nutrient and pathogen removal, heat mitigation, and privacy, but they may also pose a health risk to individuals coming in contact with the water through drinking or bathing. Whether wetlands provided a net benefit vs. harm varied according to site, season, and particular service, and several tradeoffs were identified. For example, heat is highest during the summer storm season, when pathogen loading is also high at most sites. These wetlands and waterways are not maintained and managed for ecosystem functions or services; our research suggests that accidental systems should be further examined to determine how they might be utilized and sustained by urban populations, particularly those who are socially vulnerable.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2015
- Bibcode:
- 2015AGUFM.H21J1528P
- Keywords:
-
- 0493 Urban systems;
- BIOGEOSCIENCES;
- 1632 Land cover change;
- GLOBAL CHANGE;
- 1824 Geomorphology: general;
- HYDROLOGY;
- 1834 Human impacts;
- HYDROLOGY