Reduced Order ODE Model for Linear Contrails
Abstract
It is widely acknowledged that the large uncertainties in predictions of climate impact of linear contrails stem from inadequate parametrization of contrails in GCMs. But, the parameter space on which contrail dynamics and optical properties depend is very large and spanning it using high fidelity LES is prohibitively expensive. This study leverages the large dataset of LES done so far to understand the most important physical process that governs the evolution of contrails in different stages of its life and proposes a simple, low-cost and robust ODE model to capture the evolution of quantities of interest such as ice mass, vortex downwash and contrail cross-sectional dimensions. A direct consequence of modeling the contrail using parameters impacting the most important physical process is the reduction of the original parameter space to only those groupings of parameters that impact linear contrails independently. We are able to capture the most prominent features of the contrail at every stage of the life of the contrail - the induction of the jet exhaust by the trailing vortex pair, the vortex downwash and eventual destruction and the subsequent spreading of the contrail by ambient turbulence. A simplified version of GATOR-GCMOM - a GCM - is initialized using inputs from the new ODE model to test if the inclusion of the impact of the aforementioned parameter groups has significant persistent effects. Results from the GATOR-GCMOM box model calculations show which parameter groupings show persistent effects.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2015
- Bibcode:
- 2015AGUFM.A13D0365I
- Keywords:
-
- 0305 Aerosols and particles;
- ATMOSPHERIC COMPOSITION AND STRUCTURE;
- 0320 Cloud physics and chemistry;
- ATMOSPHERIC COMPOSITION AND STRUCTURE;
- 0321 Cloud/radiation interaction;
- ATMOSPHERIC COMPOSITION AND STRUCTURE;
- 0345 Pollution: urban and regional;
- ATMOSPHERIC COMPOSITION AND STRUCTURE