Detailed Chemical Abundances of Planet-Hosting Wide Binary Systems
Abstract
We present a detailed chemical abundance analysis of planet-hosting wide binary systems. Each of these binary systems consists of two stars with similar spectral types (ranging from G2V - K2V), and in each system, at least one star hosts a giant planet with an orbital pericenter ~< 0.5 AU. We investigate if giant planets on such orbits could have scattered inner rocky planets into the atmospheres of their host stars, and thereby imprint a detectable chemical signature in the stellar photospheric abundances. Using high-resolution, high signal-to-noise echelle spectra, we derive the chemical abundances ([X/H]) of 15 elements covering a range of condensation temperatures (Tc). For stars in our sample with approximately solar metallicity, the refractory elements (Tc > 900 K) show a positive correlation between [X/H] and Tc. However, for stars with super-solar metallicities, the refractory elements show a negative correlation between [X/H] and Tc. We interpret these results in the context of numerical simulations of giant planet migration that predict the accretion of hydrogen-depleted rocky material by the host star. We demonstrate that a simple model for a solar-metallicity star accreting material with Earth-like composition predicts a positive correlation between [X/H] and Tc, while for a supersolar-metallicity star the model predicts a negative correlation. The stark contrast between the predicted correlations for solar-metallicity and supersolar-metallicity stars may indicate that extracting any chemical signature of rocky planetary accretion is particularly challenging for very metal-rich stars.
- Publication:
-
American Astronomical Society Meeting Abstracts #225
- Pub Date:
- January 2015
- Bibcode:
- 2015AAS...22542001M