IKT 16: the first X-ray confirmed composite SNR in the SMC
Abstract
Aims: IKT 16 is an X-ray and radio-faint supernova remnant (SNR) in the Small Magellanic Cloud (SMC). A detailed X-ray study of this SNR with XMM-Newton confirmed the presence of a hard X-ray source near its centre, indicating the detection of the first composite SNR in the SMC. With a dedicated Chandra observation we aim to resolve the point source and confirm its nature. We also acquire new ATCA observations of the source at 2.1 GHz with improved flux density estimates and resolution.
Methods: We perform detailed spatial and spectral analysis of the source. With the highest resolution X-ray and radio image of the centre of the SNR available today, we resolve the source and confirm its pulsar wind nebula (PWN) nature. Further, we constrain the geometrical parameters of the PWN and perform spectral analysis for the point source and the PWN separately. We also test for the radial variations of the PWN spectrum and its possible east west asymmetry.
Results: The X-ray source at the centre of IKT 16 can be resolved into a symmetrical elongated feature centring a point source, the putative pulsar. Spatial modelling indicates an extent of 5.2'' of the feature with its axis inclined at 82° east from north, aligned with a larger radio feature consisting of two lobes almost symmetrical about the X-ray source. The picture is consistent with a PWN which has not yet collided with the reverse shock. The point source is about three times brighter than the PWN and has a hard spectrum of spectral index 1.1 compared to a value 2.2 for the PWN. This points to the presence of a pulsar dominated by non-thermal emission. The expected Ė is ~1037 erg s-1 and spin period <100 ms. However, the presence of a compact nebula unresolved by Chandra at the distance of the SMC cannot completely be ruled out.
- Publication:
-
Astronomy and Astrophysics
- Pub Date:
- December 2015
- DOI:
- arXiv:
- arXiv:1508.01676
- Bibcode:
- 2015A&A...584A..41M
- Keywords:
-
- Magellanic Clouds;
- ISM: supernova remnants;
- Astrophysics - High Energy Astrophysical Phenomena
- E-Print:
- 9 pages, 6 figures, 2 tables, Accepted for publication in Astronomy &