Synchrotron cooling in energetic gamma-ray bursts observed by the Fermi Gamma-Ray Burst Monitor
Abstract
Context. We study the time-resolved spectral properties of energetic gamma-ray bursts (GRBs) with good high-energy photon statistics observed by the Gamma-Ray Burst Monitor (GBM) onboard the Fermi Gamma-Ray Space Telescope.
Aims: We aim to constrain in detail the spectral properties of GRB prompt emission on a time-resolved basis and to discuss the theoretical implications of the fitting results in the context of various prompt emission models.
Methods: Our sample comprises eight GRBs observed by the Fermi GBM in its first five years of mission, with 1 keV-1 MeV fluence f> 1.0 × 10-4 erg cm-2 and a signal-to-noise ratio level of S/N ≥ 10.0 above 900 keV. We performed a time-resolved spectral analysis using a variable temporal binning technique according to optimal S/N criteria, resulting in a total of 299 time-resolved spectra. We performed Band function fits to all spectra and obtained the distributions for the low-energy power-law index α, the high-energy power-law index β, the peak energy in the observed νFν spectrum Ep, and the difference between the low- and high-energy power-law indices Δs = α - β. We also applied a physically motivated synchrotron model, which is a triple power-law with constrained power-law indices and a blackbody component, to test the prompt emission for consistency with a synchrotron origin and obtain the distributions for the two break energies Eb,1 and Eb,2, the middle segment power-law index β, and the Planck function temperature kT.
Results: The Band function parameter distributions are α = -0.73+0.16-0.21, β =ي-2.13+0.28-0.56, Ep = 374.4+307.3-187.7 , keV (log10Ep = 2.57+0.26-0.30), and Δs = 1.38+0.54-0.31 , with average errors σα ~ 0.1, σβ ~ 0.2, and σEp ~ 0.1Ep. Using the distributions of Δs and β, the electron population index p is found to be consistent with the "moderately fast" scenario, in which fast- and slow-cooling scenarios cannot be distinguished. The physically motivated synchrotron-fitting function parameter distributions are Eb,1 = 129.6+132.2-32.4 keV, Eb,2 = 631.4+582.6-309.6 keV, β = -1.72+0.48-0.25 , and kT = 10.4+4.9-3.7 keV, with average errors σβ ~ 0.2, σEb,1 ~ 0.1Eb,1, σEb,2 ~ 0.4Eb,2, and σkT ~ 0.1kT. This synchrotron function requires the synchrotron injection and cooling break (i.e., Emin and Ecool) to be close to each other within a factor of ten, often in addition to a Planck function.
Conclusions: A synchrotron model is found that is consistent with most of the time-resolved spectra for eight energetic Fermi GBM bursts with good high-energy photon statistics as long as both the cooling and injection break are included and the leftmost spectral slope is lifted either by including a thermal component or when an evolving magnetic field is accounted for.
- Publication:
-
Astronomy and Astrophysics
- Pub Date:
- January 2015
- DOI:
- 10.1051/0004-6361/201424858
- arXiv:
- arXiv:1410.7602
- Bibcode:
- 2015A&A...573A..81Y
- Keywords:
-
- gamma rays: stars;
- gamma-ray burst: general;
- radiation mechanisms: non-thermal;
- methods: data analysis;
- Astrophysics - High Energy Astrophysical Phenomena
- E-Print:
- 20 pages, 7 figures, 8 tables, accepted for publication in A&