Massive Star Formation
Abstract
The enormous radiative and mechanical luminosities of massive stars impact a vast range of scales and processes, from the reionization of the universe, to the evolution of galaxies, to the regulation of the interstellar medium, to the formation of star clusters, and even to the formation of planets around stars in such clusters. Two main classes of massive star formation theory are under active study: core accretion and competitive accretion. In core accretion, the initial conditions are self-gravitating, centrally concentrated cores that condense with a range of masses from the surrounding, fragmenting clump environment. They then undergo relatively ordered collapse via a central disk to form a single star or a small-N multiple. In this case, the prestellar core mass function has a similar form to the stellar initial mass function. In competitive accretion, the material that forms a massive star is drawn more chaotically from a wider region of the clump without passing through a phase of being in a massive, coherent core. In this case, massive star formation must proceed hand in hand with star cluster formation. If stellar densities become very high near the cluster center, then collisions between stars may also help to form the most massive stars. We review recent theoretical and observational progress toward understanding massive star formation, considering physical and chemical processes, comparisons with low and intermediate-mass stars, and connections to star cluster formation.
- Publication:
-
Protostars and Planets VI
- Pub Date:
- 2014
- DOI:
- arXiv:
- arXiv:1402.0919
- Bibcode:
- 2014prpl.conf..149T
- Keywords:
-
- Astrophysics - Astrophysics of Galaxies
- E-Print:
- Accepted for publication as a chapter in Protostars and Planets VI, University of Arizona Press (2014), eds. H. Beuther, R. Klessen, C. Dullemond, Th. Henning