Cohesive Dynamics and Brittle Fracture
Abstract
We formulate a nonlocal cohesive model for calculating the deformation state inside a cracking body. In this model a more complete set of physical properties including elastic and softening behavior are assigned to each point in the medium. We work within the small deformation setting and use the peridynamic formulation. Here strains are calculated as difference quotients. The constitutive relation is given by a nonlocal cohesive law relating force to strain. At each instant of the evolution we identify a process zone where strains lie above a threshold value. Perturbation analysis shows that jump discontinuities within the process zone can become unstable and grow. We derive an explicit inequality that shows that the size of the process zone is controlled by the ratio given by the length scale of nonlocal interaction divided by the characteristic dimension of the sample. The process zone is shown to concentrate on a set of zero volume in the limit where the length scale of nonlocal interaction vanishes with respect to the size of the domain. In this limit the dynamic evolution is seen to have bounded linear elastic energy and Griffith surface energy. The limit dynamics corresponds to the simultaneous evolution of linear elastic displacement and the fracture set across which the displacement is discontinuous. We conclude illustrating how the approach developed here can be applied to limits of dynamics associated with other energies that $\Gamma$- converge to the Griffith fracture energy.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2014
- DOI:
- 10.48550/arXiv.1411.4609
- arXiv:
- arXiv:1411.4609
- Bibcode:
- 2014arXiv1411.4609L
- Keywords:
-
- Mathematics - Analysis of PDEs;
- 34A34;
- 74H55;
- 74R10
- E-Print:
- 38 pages, 4 figures, typographical errors corrected, removed section 7 of previous version and added section 8 to the current version, changed title to Cohesive Dynamics and Brittle Fracture. arXiv admin note: text overlap with arXiv:1305.4531