Restriction Theorems On Métiver Groups Associated to Joint Functional Calculus
Abstract
In this article, we get the spectral solution $\mathcal{P}_{\mu}^{m}$ of operators $m(\mathcal{L}, -\Delta_\mathfrak{z})$, the joint functional calculus of the sub-Laplacian and Laplacian on the centre of Métivier group. Then, we give some group-analogues of the Thomas-Stein-type restriction theorem, asserting the mix-norm boundness of the restriction operators $\mathcal{P}_{\mu}^{m}$ for two classes of functions $m=(a^\alpha+b^\beta)^\gamma$ and $m=(1+a^\alpha+b^\beta)^\gamma$ with $\alpha, \beta>0, \gamma\neq0$.
- Publication:
-
arXiv e-prints
- Pub Date:
- October 2014
- DOI:
- 10.48550/arXiv.1410.4338
- arXiv:
- arXiv:1410.4338
- Bibcode:
- 2014arXiv1410.4338L
- Keywords:
-
- Mathematics - Functional Analysis;
- Mathematics - Spectral Theory;
- 22E25;
- 22E30;
- 43A80
- E-Print:
- Some small corrections