The main sequence and the fundamental metallicity relation in MaGICC Galaxies: evolution and scatter
Abstract
Using cosmological galaxy simulations from the MaGICC project, we study the evolution of the stellar masses, star formation rates and gas-phase abundances of star-forming galaxies. We derive the stellar masses and star formation rates using observational relations based on spectral energy distributions by applying the new radiative transfer code GRASIL-3D to our simulated galaxies. The simulations match well the evolution of the stellar mass-halo mass relation, have a star-forming main sequence that maintains a constant slope out to redshift z ∼ 2, and populate projections of the stellar mass - star formation - metallicity plane, similar to observed star-forming disc galaxies. We discuss small differences between these projections in observational data and in simulations, and the possible causes for the discrepancies. The light-weighted stellar masses are in good agreement with the simulation values, the differences between the two varying between 0.06 and 0.20 dex. We also find good agreement between the star formation rate tracer and the true (time-averaged) simulation star formation rates. Regardless, if we use mass- or light-weighted quantities, our simulations indicate that bursty star formation cycles can account for the scatter in the star-forming main sequence.
- Publication:
-
Monthly Notices of the Royal Astronomical Society
- Pub Date:
- August 2014
- DOI:
- 10.1093/mnras/stu891
- arXiv:
- arXiv:1404.0043
- Bibcode:
- 2014MNRAS.442.1794O
- Keywords:
-
- galaxies: abundances;
- galaxies: evolution;
- galaxies: formation;
- galaxies: star formation;
- galaxies: stellar content;
- Astrophysics - Astrophysics of Galaxies
- E-Print:
- 12 pages, 8 figures, submitted to MNRAS