On the deceleration of Fanaroff-Riley Class I jets: mass loading by stellar winds
Abstract
Jets in low-luminosity radio galaxies are known to decelerate from relativistic speeds on parsec scales to mildly or subrelativistic speeds on kiloparsec scales. Several mechanisms have been proposed to explain this effect, including strong reconfinement shocks and the growth of instabilities (both leading to boundary-layer entrainment) and mass loading from stellar winds or molecular clouds. We have performed a series of axisymmetric simulations of the early evolution of jets in a realistic ambient medium to probe the effects of mass loading from stellar winds using the code RATPENAT. We study the evolution of Fanaroff-Riley Class I (FR I) jets, with kinetic powers Lj ∼ 1041-1044 erg s-1, within the first 2 kpc of their evolution, where deceleration by stellar mass loading should be most effective. Mass entrainment rates consistent with present models of stellar mass loss in elliptical galaxies produce deceleration and effective decollimation of weak FR I jets within the first kiloparsec. However, powerful FR I jets are not decelerated significantly. In those cases where the mass loading is important, the jets show larger opening angles and decollimate at smaller distances, but the overall structure and dynamics of the bow shock are similar to those of unloaded jets with the same power and thrust. According to our results, the flaring observed on kiloparsec scales is initiated by mass loading in the weaker FR I jets and by reconfinement shocks or the growth of instabilities in the more powerful jets. The final mechanism of decollimation and deceleration is always the development of disruptive pinching modes.
- Publication:
-
Monthly Notices of the Royal Astronomical Society
- Pub Date:
- June 2014
- DOI:
- arXiv:
- arXiv:1404.1209
- Bibcode:
- 2014MNRAS.441.1488P
- Keywords:
-
- hydrodynamics;
- stars: winds;
- outflows;
- galaxies: active;
- galaxies: jets;
- Astrophysics - High Energy Astrophysical Phenomena;
- Astrophysics - Astrophysics of Galaxies
- E-Print:
- Accepted for publication in Monthly Notices of the Royal Astronomical Society