The discovery of quasars and its aftermath
Abstract
Although the extragalactic nature of quasars was discussed as early as 1960 by John Bolton and others it was rejected largely because of preconceived ideas about what appeared to be an unrealistically-high radio and optical luminosity. Following the 1962 observation of the occultations of the strong radio source 3C 273 with the Parkes Radio Telescope and the subsequent identification by Maarten Schmidt of an apparent stellar object, Schmidt recognized that the simple hydrogen line Balmer series spectrum implied a redshift of 0.16. Successive radio and optical measurements quickly led to the identification of other quasars with increasingly-large redshifts and the general, although for some decades not universal, acceptance of quasars as being by far the most distant and the most luminous objects in the Universe. However, due to an error in the calculation of the radio position, it appears that the occultation position played no direct role in the identification of 3C 273, although it was the existence of a claimed accurate occultation position that motivated Schmidt's 200-in Palomar telescope investigation and his determination of the redshift.
Curiously, 3C 273, which is one of the strongest extragalactic sources in the sky, was first catalogued in 1959, and the 13th magnitude optical counterpart was observed at least as early as 1887. Since 1960, much fainter optical counterparts were being routinely identified, using accurate radio interferometer positions which were measured primarily at the Caltech Owens Valley Radio Observatory. However, 3C 273 eluded identification until the series of lunar occultation observations led by Cyril Hazard. Although an accurate radio position had been obtained earlier with the Owens Valley Interferometer, inexplicably 3C 273 was misidentified with a faint galaxy located about one arc minute away from the true position. It appears that the Parkes occultation position played only an indirect role in the identification of the previously-suspected galactic star, which was only recognized as the optical counterpart after 's 200-in observations showed it to have a peculiar spectrum corresponding to a surprisingly-large redshift.- Publication:
-
Journal of Astronomical History and Heritage
- Pub Date:
- November 2014
- Bibcode:
- 2014JAHH...17..267K
- Keywords:
-
- quasars;
- radio stars;
- AGN;
- lunar occultation;
- redshift