Microlensing Constraints on the Abundance of Extrasolar Planets
Abstract
Galactic gravitational microlensing is a powerful technique to detect extrasolar planets at large orbital distances from their stars, from giant down to Earth-mass planets. We report a statistical analysis (Cassan et al. 2012) that combines six years of microlensing observations gathered between 2002 to 2007 by the PLANET and OGLE collaborations. From these data, we estimate the frequency of cool extrasolar planets, with masses ranging from 5 Earths to 10 Jupiters and orbits between 0.5 to 10 Astronomical Units. We find that in average, one in six stars has a Jupiter-like gas giant as companion planet, that about half the stars are orbited by a Neptune-like giant, and two-thirds are associated to super-Earths. Our study also suggests that planets should be ubiquitous throughout the Galaxy. Current deployment of wide-field imagers and possible space-based observations onboard ESA spacecraft EUCLID will soon allow a large increase of the number of monitored microlensing events. These new observatories should provide in a near future a more detailed view on planet abundance as a function of mass.
- Publication:
-
Formation, Detection, and Characterization of Extrasolar Habitable Planets
- Pub Date:
- April 2014
- DOI:
- 10.1017/S1743921313012477
- Bibcode:
- 2014IAUS..293...27C
- Keywords:
-
- Gravitational lensing;
- planetary systems;
- methods: statistical