The Light Curve of SN 1987A Revisited: Constraining Production Masses of Radioactive Nuclides
Abstract
We revisit the evidence for the contribution of the long-lived radioactive nuclides 44Ti, 55Fe, 56Co, 57Co, and 60Co to the UVOIR light curve of SN 1987A. We show that the V-band luminosity constitutes a roughly constant fraction of the bolometric luminosity between 900 and 1900 days, and we obtain an approximate bolometric light curve out to 4334 days by scaling the late time V-band data by a constant factor where no bolometric light curve data is available. Considering the five most relevant decay chains starting at 44Ti, 55Co, 56Ni, 57Ni, and 60Co, we perform a least squares fit to the constructed composite bolometric light curve. For the nickel isotopes, we obtain best fit values of M(56Ni) = (7.1 ± 0.3) × 10-2 M ⊙ and M(57Ni) = (4.1 ± 1.8) × 10-3 M ⊙. Our best fit 44Ti mass is M(44Ti) = (0.55 ± 0.17) × 10-4 M ⊙, which is in disagreement with the much higher (3.1 ± 0.8) × 10-4 M ⊙ recently derived from INTEGRAL observations. The associated uncertainties far exceed the best fit values for 55Co and 60Co and, as a result, we only give upper limits on the production masses of M(55Co) < 7.2 × 10-3 M ⊙ and M(60Co) < 1.7 × 10-4 M ⊙. Furthermore, we find that the leptonic channels in the decay of 57Co (internal conversion and Auger electrons) are a significant contribution and constitute up to 15.5% of the total luminosity. Consideration of the kinetic energy of these electrons is essential in lowering our best fit nickel isotope production ratio to [57Ni/56Ni] = 2.5 ± 1.1, which is still somewhat high but is in agreement with gamma-ray observations and model predictions.
- Publication:
-
The Astrophysical Journal
- Pub Date:
- September 2014
- DOI:
- arXiv:
- arXiv:1408.5986
- Bibcode:
- 2014ApJ...792...10S
- Keywords:
-
- nuclear reactions;
- nucleosynthesis;
- abundances;
- supernovae: general;
- supernovae: individual: SN 1987A;
- Astrophysics - Solar and Stellar Astrophysics;
- Astrophysics - High Energy Astrophysical Phenomena
- E-Print:
- 7 pages, 6 pages, 2 tables