Polarized Light Imaging of the HD 142527 Transition Disk with the Gemini Planet Imager: Dust around the Close-in Companion
Abstract
When giant planets form, they grow by accreting gas and dust. HD 142527 is a young star that offers a scaled-up view of this process. It has a broad, asymmetric ring of gas and dust beyond ~100 AU and a wide inner gap. Within the gap, a low-mass stellar companion orbits the primary star at just ~12 AU, and both the primary and secondary are accreting gas. In an attempt to directly detect the dusty counterpart to this accreted gas, we have observed HD 142527 with the Gemini Planet Imager in polarized light at Y band (0.95-1.14 μm). We clearly detect the companion in total intensity and show that its position and photometry are generally consistent with the expected values. We also detect a point source in polarized light that may be spatially separated by ~ a few AU from the location of the companion in total intensity. This suggests that dust is likely falling onto or orbiting the companion. Given the possible contribution of scattered light from this dust to previously reported photometry of the companion, the current mass limits should be viewed as upper limits only. If the dust near the companion is eventually confirmed to be spatially separated, this system would resemble a scaled-up version of the young planetary system inside the gap of the transition disk around LkCa 15.
Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministrio da Cincia, Tecnologia e Inovao (Brazil), and Ministerio de Ciencia, Tecnologa e Innovacin Productiva (Argentina).- Publication:
-
The Astrophysical Journal
- Pub Date:
- August 2014
- DOI:
- 10.1088/2041-8205/791/2/L37
- arXiv:
- arXiv:1407.7041
- Bibcode:
- 2014ApJ...791L..37R
- Keywords:
-
- circumstellar matter;
- instrumentation: adaptive optics;
- planetary systems;
- stars: individual: HD 142527;
- techniques: high angular resolution;
- Astrophysics - Solar and Stellar Astrophysics;
- Astrophysics - Earth and Planetary Astrophysics;
- Astrophysics - Instrumentation and Methods for Astrophysics
- E-Print:
- Accepted to ApJ Letters on July 24, 2014. 6 pages (emulateapj style), 4 figures