Methyl mercury uptake by diverse marine phytoplankton and trophic transfer to zooplankton
Abstract
While it is well known that methylmercury (MeHg) biomagnifies in aquatic food chains, few studies have quantified its bioaccumulation in marine phytoplankton from seawater, even though that is overwhelmingly the largest bioaccumulation step. Aquatic animals acquire MeHg mainly from dietary exposure and it is important to evaluate the bioaccumulation of this compound in planktonic organisms that form the base of marine food webs. We used a gamma-emitting radioisotope, 203Hg, to assess the rate and extent of MeHg uptake in marine diatoms, dinoflagellates, coccolithophores, cryptophytes chlorophytes, and cyanobacteria held in unialgal cultures under varying temperature and light conditions. For experimental conditions in which the dissolved MeHg was at 300 pM, the uptake rates in all species ranged from 0.004 to 0.75 amol Hg μm-3 cell volume d-1 and reached steady state within 2 d. Volume concentration factors (VCFs) ranged from 0.4 to 60 x 105 for the different species. Temperature and light conditions had no direct effect on cellular MeHg uptake but ultimately affected growth of the cells, resulting in greater suspended particulate matter and associated MeHg. VCFs strongly correlated with cell surface area to volume ratios in all species. Assimilation efficiencies of MeHg from phytoplankton food (Thalassiosira pseudonana, Dunaliella tertiolecta and Rhodomonas salina) in a marine copepod grazer (Acartia tonsa) ranged from 74 to 92%, directly proportional to the cytoplasmic partitioning of MeHg in the phytoplankton cells. MeHg uptake in copepods from the aqueous phase was low and modeling shows that nearly all the MeHg acquired by this zooplankter is from diet. Herbivorous zooplankton can be an important link from phytoplankton at the base of the food web to fish higher in the food chain.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2014
- Bibcode:
- 2014AGUFMOS51F..08L
- Keywords:
-
- 4805 Biogeochemical cycles;
- processes;
- and modeling;
- 4807 Chemical speciation and complexation;
- 4825 Geochemistry;
- 4875 Trace elements