The Effects of Ion heating in Martian Magnetic Crustal Fields: Particle Tracing and Ion Distributions
Abstract
Ion heating is a process that may allow low energy ions within the Martian ionosphere to be accelerated and escape. Ion heating can be especially efficient if the ions stay in the heating region for long time durations. With this in mind, the magnetic crustal field regions on Mars are particularly interesting. We focus on ions present within these regions, where changes in magnetic field strength and direction can heat these ions. Since crustal magnetic fields can maintain a trapped particle population it is unclear how efficiently plasma can be built up that can later escape to space. We investigate here two drivers: rotation of the planet and the solar wind pressure. As crustal fields rotate from the wake of the planet to the sub solar point and back, they experience compression and expansion over time scales of ~24 hours. The solar wind pressure on the other hand can cause variations over much shorter time scales (minutes). The effect of these two drivers using a particle tracing simulation that solves the Lorentz force is presented. O+ ions are seeded within the simulation box. The magnetic environment is a linear sum of a dipole field and a solar wind magnetic field. The dipole field represents the magnetic crustal field and the dipole strength is chosen to be consistent with MGS magnetometer observations of Martian crustal field regions. By increasing the solar wind strength the magnetic dipole is compressed. Decreasing solar wind strength allows the dipole to expand. Small magnitude, short time scale variations can be imposed over the top of this larger variation to represent short time scale solar wind variations. Since the purpose of this analysis is to understand the changes of the ion distribution inside the crustal field, simplistic assumptions of the field outside the crustal field can be made. Initial results are presented, with the focus on two main questions: (a) can low energy ions be heated and escape the closed dipole field lines as a result of varying magnetic fields; (b) is the compression and relaxation of the crustal field due to rotation important for the oxygen escape rates when compared to the particle evolution due to high frequency changes in magnetic field and the lifetimes of these ions.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2014
- Bibcode:
- 2014AGUFMGP51B3727F
- Keywords:
-
- 1510 Dynamo: theories and simulations;
- GEOMAGNETISM AND PALEOMAGNETISM;
- 1595 Planetary magnetism: all frequencies and wavelengths;
- GEOMAGNETISM AND PALEOMAGNETISM;
- 6240 Meteorites and tektites;
- PLANETARY SCIENCES: SOLAR SYSTEM OBJECTS;
- 5440 Magnetic fields and magnetism;
- PLANETARY SCIENCES: SOLID SURFACE PLANETS