Preferential Weathering of Carbonatite Lava at Ol Doinyo Lengai, Tanzania
Abstract
Although carbonatites have been produced since the Archean and are preserved in the geologic record, the East African Rift is home to the only active carbonatite volcano, at Ol Doinyo Lengai. It has long been known that the natrocarbonatites become strongly weathered the first time they are exposed to rain. We studied the weathering patterns in the field and have determined the mineralogical transformations via petrography and XRD. Mass transport is assessed by XRF and ICP-MS analyses. Water preferentially dissolves specific minerals in the pristine lava, permeating through earlier layers of flow to form stalactites, which have differing mineralogical composition. These hang both from the host flow and from the bottom of underlying earlier flows. The weathering product is characterized by trona, a hydrated carbonate mineral, as well as the sodium sulfate mineral aphthitalite. Data from XRD analysis of the carbonatite lava confirm transformation of its original minerals, nyerereite and gregoryite, into secondary hydrated carbonate minerals gaylussite and pirssonite (e.g., Zaitsev and Keller, 2006). This transformation is attributed to the instability of the erupted minerals at atmospheric conditions. Data from XRF analysis indicate a 4-fold increase in the amount of sodium present in the stalactite as well as a 8-fold increase in potassium. Trace element analysis by ICP-MS indicates significantly elevated levels of vanadium, copper, and rubidium in the weathering product, whereas strontium, barium, lanthanum, and cesium are left behind in high concentrations in the carbonatite lava. Our results provide further evidence supporting the proposal by Dawson et al. (1987) that calcium carbonate dominated lava flows result from extensive weathering of sodic carbonatite flows.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2014
- Bibcode:
- 2014AGUFM.V51C4765R
- Keywords:
-
- 3618 Magma chamber processes;
- 3625 Petrography;
- microstructures;
- and textures;
- 8434 Magma migration and fragmentation;
- 8439 Physics and chemistry of magma bodies