James Webb Space Telescope Synergy with Dark Energy Missions
Abstract
As the successor to the Hubble Space Telescope (HST), the James Webb Space Telescope (JWST) will be a general-purpose observatory which will impact all areas of observational astronomy. Two future dark energy missions are being planned: Euclid in Europe and the Wide-Field Infrared Survey Telescope (WFIRST) in the US. While JWST is designed to go very deep in the infrared, the dark energy missions will conduct wide-area surveys of a substantial fraction of the sky in the optical and near-infrared. Synergy between JWST and Euclid or WFIRST could proceed in several ways. (1) JWST will make contributions to dark energy science that will be complementary to the results from the wide-area surveys. These contributions could include a more precise measurement of the current value of the Hubble constant, and rest-frame near-infrared light curves for high-redshift type Ia supernovae. (2) JWST could directly contribute to the dark energy science of the wide-area missions by providing additional calibration, investigating anomalies in the dataset, or with complementary observations that are deeper over a smaller area. (3) JWST could make follow-up observations of Euclid or WFIRST discoveries of rare objects, such as high-redshift quasars, strong-lens systems, galaxy clusters and supernovae.
- Publication:
-
American Astronomical Society Meeting Abstracts #223
- Pub Date:
- January 2014
- Bibcode:
- 2014AAS...22314930G